Convergence of Adaptive BEM and Adaptive FEM-BEM Coupling for Estimators Without h-Weighting Factor

نویسندگان

  • Michael Feischl
  • Thomas Führer
  • Gregor Mitscha-Eibl
  • Dirk Praetorius
  • Ernst P. Stephan
چکیده

We analyze adaptive mesh-refining algorithms in the frame of boundary element methods (BEM) and the coupling of finite elements and boundary elements (FEM-BEM). Adaptivity is driven by the two-level error estimator proposed by Ernst P. Stephan, Norbert Heuer, and coworkers in the frame of BEM and FEM-BEM or by the residual error estimator introduced by Birgit Faermann for BEM for weakly-singular integral equations. We prove that in either case the usual adaptive algorithm drives the associated error estimator to zero. Emphasis is put on the fact that the error estimators considered are not even globally equivalent to weighted-residual error estimators for which recently convergence with quasi-optimal algebraic rates has been derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical FEM - BEM coupling methods : nonlinearities , well - posedness , and adaptivity

We consider a (possibly) nonlinear interface problem in 2D and 3D, which is solved by use of various adaptive FEM-BEM coupling strategies, namely the Johnson-Nédélec coupling, the Bielak-MacCamy coupling, and Costabel’s symmetric coupling. We provide a framework to prove that the continuous as well as the discrete Galerkin solutions of these coupling methods additionally solve an appropriate op...

متن کامل

Stiffeners Mechanical Effect Analysis by Numerical Coupling

Given any structure, we seek to find the solution of mechanical problem as precisely and efficiently as possible. Within this condition, the BEM is robust and promising development, standing out in the analysis of cases with occurrence of large stress gradients, as in problems of fracture mechanics. Moreover, in BEM the modeling of infinite means is performed naturally, without the use of appro...

متن کامل

A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling

Only very recently, Sayas [The validity of Johnson-Nédélec's BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 2009;47:3451-63] proved that the Johnson-Nédélec one-equation approach from [On the coupling of boundary integral and finite element methods. Math Comput 1980;35:1063-79] provides a stable coupling of finite element method (FEM) and boundary element method (BEM). In our work,...

متن کامل

Residual A-Posteriori Error Estimates in BEM: Convergence of h-Adaptive Algorithms

Galerkin methods for FEM and BEM based on uniform mesh refinement have a guaranteed rate of convergence. Unfortunately, this rate may be suboptimal due to singularities present in the exact solution. In numerical experiments, the optimal rate of convergence is regained when algorithms based on a-posteriori error estimation and adaptive mesh-refinement are used. This observation was proved mathe...

متن کامل

On the Adaptive Coupling of Finite Elements and Boundary Elements for Elasto-Plastic Analysis

The purpose of this paper is to present an adaptive FEM-BEM coupling method that is valid for both twoand three-dimensional elasto-plastic analyses. The method takes care of the evolution of the elastic and plastic regions. It eliminates the cumbersome of a trial and error process in the identification of the FEM and BEM sub-domains in the standard FEM-BEM coupling approaches. The method estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Meth. in Appl. Math.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014